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Abstract—Sequence models, such as Large Language Models
(LLMs) and autoregressive image generators, have a tendency
to memorize and inadvertently leak sensitive information.
While this tendency has critical legal implications, existing tools
are insufficient to audit the resulting risks. We hypothesize that
those tools’ shortcomings are due to mismatched assumptions.
Thus, we argue that effectively measuring privacy leakage in
sequence models requires leveraging the correlations inherent
in sequential generation. To illustrate this, we adapt a state-of-
the-art membership inference attack to explicitly model within-
sequence correlations, thereby demonstrating how a strong
existing attack can be naturally extended to suit the structure
of sequence models. Through a case study, we show that our
adaptations consistently improve the effectiveness of memo-
rization audits without introducing additional computational
costs. Our work hence serves as an important stepping stone
toward reliable memorization audits for large sequence models.

1. Introduction

Large sequence models, such as LLMs, are trained on a
vast portion of the Internet. Since this data contains sensitive
or protected information [1, 2], understanding and mitigating
memorization of sequence models is an important task.
Membership inference attacks (MIAs [3]) are a key tool
for this task, which aims to classify whether a given sample
was part of the training data. However, current MIAs for
large sequence models cannot reliably prove the presence
or absence of memorization [4].

In contrast, typical discriminative settings (e.g., image
classification) exhibit highly successful membership infer-
ence attacks such as the Likelihood Ratio Attack (LiRA) [5].
Conceptually, LiRA first trains shadow models [3] that
mimic a victim model and then uses a sample’s cross-
entropy loss on the victim and shadow models as the input
to a statistical hypothesis test.! Hence, one might expect
the same methodology to yield a strong baseline for large
sequence models. However, a naive application can fail
to uncover significant memorization, as seen in Figure 1
(“Naive Approach”).

1. In practice, the loss is rescaled to better match statistical assumptions.
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Figure 1: Strong membership inference for sequence
models must consider correlations between sequence
elements. We apply LiRA, a state-of-the-art MIA, to mea-
sure memorization in language modeling. First, we use
LiRA as-is, where membership guesses only depend on a
sample’s loss (“Naive Approach”). This approach uncovers
only a small amount of memorization, as indicated by TPR
(True Positive Rate) values close to the FPR (False Positive
Rate) of 0.01%. However, if we adapt LiRA to explicitly
consider correlations between sequential predictions (“Our
Approach”), we can uncover significantly more memoriza-
tion (up to 87.5x more). See Appendix A for details.

We hypothesize that the implicit assumptions of that
approach are partially invalid for sequence models. In par-
ticular, standard MIAs assume that a sample’s loss is suf-
ficient to determine membership. However, in the context
of sequence modeling, this treats all sequence elements
as independent—an assumption that is clearly wrong for
domains such as language. We hence argue that strong MIAs
for sequence models crucially need to exploit the correlation
between sequence elements.

In this paper, we explore adaptations to LiRA that
account for within-sequence correlations. By explicitly es-
timating the covariance between sequence elements in a
sample-efficient way, our adaptations uncover significantly
more memorization in Figure 1 than the naive approach—
with only few shadow models and trivial overhead.

We then study our adaptations on different types of se-



quence models, where we show that those improvements are
consistent: accounting for within-sequence correlations can
significantly help an attack to uncover memorization, and
never truly hurts. Additionally, we compare different types
of covariance estimators, and find that a strong inductive
bias can sometimes reduce the required number of shadow
models by an order of magnitude. Therefore, while we do
not propose a new standalone attack, our discoveries serve
as an important stepping stone toward truly stronger MIAs
for large sequence models.

2. Preliminaries and Related Work

We first describe memorization and membership in gen-
eral, and then introduce autoregressive models as one spe-
cific instance of sequence models.

2.1. Memorization and Privacy Auditing

The extent of memorization in sequence models remains
an active area of debate. Although some studies suggest
that large-scale models exhibit limited memorization and
are unlikely to expose sensitive information under normal
conditions [6, 7, 8, 9], other works provide strong evidence
that these models can memorize and leak substantial por-
tions of their training data [10, 11, 12, 13, 14, 15, 16, 17].
The discrepancy between these findings is probably due to
differences in evaluation methodologies, dataset character-
istics, and the selection of test samples (some types of data
are more prone to memorization [10, 18]).

Beyond empirical evidence, theoretical studies indicate
that memorization is not simply an unintended byproduct of
large-scale training, but it can be even necessary to achieve
a low generalization error [19, 20]. This raises fundamental
questions about the trade-off between model utility and pri-
vacy risks. Understanding the mechanisms of memorization,
identifying vulnerable data instances, and designing robust
privacy auditing techniques are essential to mitigating the
risks associated with sequence models.

2.2. Membership Inference Attacks

The goal of MIAs is to determine whether a specific
sample was part of the training data [3]. This is typically
framed as a standard security game [5, 21, 22], where the
objective is to make a binary prediction—indicating whether
the sample was included in the training dataset or not.
Rather than making strict binary predictions, MIAs often
rely on a membership inference score A(f, ), where f, =
are respectively the model and sample audited. A higher
scores reflect greater confidence that a sample belongs to
the training dataset. A threshold can always be applied to
convert these scores back into binary decisions. Using a soft
prediction approach enables the evaluation of performance
across all possible false positive rates. This, in turn, allows
for a comprehensive analysis of the full ROC curve.

When MI is employed as a privacy auditing tool, as is
frequently done in computer security [5, 18, 23, 24], these

attacks are usually assessed using worst-case metrics such
as the attack’s true positive rate (TPR) at low false positive
rates (FPR). Consequently, if a membership inference attack
can reliably and consistently compromise the privacy of even
a small subset of vulnerable users in a sensitive dataset,
the training algorithm can be considered to leak private
information (see [5, 18] for a more detailed discussion).

Following the standard membership inference security
game is often impractical, as it would require training too
many models to get reasonable estimates for the TPR @
low FPR metric. For this reason, it is common to sample a
random subset of the canaries and add them to the training
data at each run [5, 18, 25].

Different membership inference attacks were developed
specifically for LLMs [26, 27, 28]. Some of the existing
black-box attacks exploit the sequential structure of lan-
guage and construct a statistic by aggregating the per-token
scores in a specific way. For instance, [26] showed that only
considering the K% of tokens with the smallest likelihood
improves the performance of the attack.

Many works use the same global threshold across all
the samples. However, different studies have shown that
calibrating the threshold for each sample greatly improves
membership inference attacks, as some samples are harder
to learn [5, 29, 30]. This is particularly problematic because
most of the uncalibrated membership inference attacks are
strong non-membership inference attacks; they cannot re-
liably distinguish easy-to-predict non-members and hard-
to-predict members [5, 30]. Several studies address this
issue by calibrating predictions [5, 31, 32] using numerous
shadow models. While employing a large number of shadow
models improves MIA performance, it also comes with
a major drawback—significantly increasing computational
costs. In the following, we focus on the Likelihood Ratio
Attack as a state-of-the-art instance of such attacks.

The Likelihood Ratio Attack (LiRA). [5] developed
a method to calibrate the scores using shadow models. The
main idea is to train many shadow models with and without
the target sample x. Then, compute a score S for each run,
and estimate the parameters of a Gaussian distribution for
the IN case, where the target sample x was part of the
training data, and the OUT case, where it was not part of
the training data. Finally, compute the likelihood ratio

N(S(f7 J)) ‘ Mw,ima%,in)
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They also noticed that using scores of multiple aug-
mented versions of the same sample improves the perfor-
mance. To account for multiple scores, they model each IN
and OUT score as an independent Gaussian distribution.

The Neyman-Pearson lemma [33] ensures that the likeli-
hood ratio test is the most powerful test for a given model. In
LiRA, this model assumes a Gaussian loss distribution, mak-
ing the test uniformly most powerful under that assumption.
If the true loss distribution deviates from Gaussianity, the
resulting likelihood ratio test may be suboptimal in practice,
limiting the expressiveness and effectiveness of the attack.

A(f,z) =



2.3. Autoregressive Sequence Models

Autoregressive models are a common way to solve a
wide range of problems across various sequential domains,
including text generation [34], image generation [35, 36],
time series forecasting [37], and protein structure predic-
tion [38]. The underlying assumption of autoregressive mod-
els is that each sequence element only depends on its
preceding elements, formalized as follows:

te{l,2,...},

where the conditional probability distribution p(zi+1 |
Z1,...,x¢) models the likelihood of the next element given
the past observations. The likelihood of a given sequence is
hence the product of individual elements’ likelihoods.

Several architectures have been developed for different
types of sequential data:

Recurrent Neural Networks (RNNs) and Long
Short-Term Memory (LSTM). Recurrent neural networks
(RNNs), particularly Long Short-Term Memory (LSTM)
networks [39], have historically been used due to their
ability to capture long-range dependencies.

Transformer-based architectures and LLMs. Trans-
former architectures [40] revolutionized autoregressive mod-
eling, particularly in text generation. Unlike RNNs and
LSTMs, transformers rely entirely on self-attention mech-
anisms, allowing them to capture long-range dependencies
more effectively. LLMs, such as Pythia [41], build on this
foundation, scaling transformers to billions of parameters to
achieve human-like text generation capabilities.

Autoregressive Image Generation. Autoregressive
models have been extended to image generation by se-
quentially modeling the dependencies between pixels. For
example, PixelCNN++ [36] employs a convolutional archi-
tecture that efficiently captures these pixel dependencies
while preserving the autoregressive property.

Tiy1 ™~ p($t+1 | €1, -~-79Ct)7

2.4. Covariance Estimation

LiRA models a sample’s loss using Gaussian distribu-
tions. For autoregressive models, a sample’s loss is the sum
of per-element losses. An alternative is hence to model the
losses of individual sequence elements as a multivariate
Gaussian, which requires estimating a covariance.

The simplest approach to estimating the covariance ma-
trix is through the maximum likelihood estimator (MLE):

N
1 S T
YMLE = NZ;(Xi -X)(X; —X)",

where the {X;}¥ | are the N observed vectors, and X =
L S°¥ | X;. In LiRA, N represents the number of shadow
models used, and X; represents the vector of (log) losses of
the ¢-th shadow model. Although the MLE is unbiased, it has
notable shortcomings. In particular, it often fails to provide
reliable estimates of the eigenvalues of the covariance ma-
trix, and in scenarios where the number of samples is smaller
than the number of dimensions, the resulting matrix is

non-invertible. This poses significant challenges, especially
in high-dimensional applications where an accurate MLE
requires many samples.

One straightforward solution is to assume a diagonal
covariance structure, which effectively treats different fea-
tures as uncorrelated. A more advanced type of structure
is given by shrinkage-based covariance estimators. These
methods compute a convex combination of the MLE-based
covariance matrix and a diagonal matrix with controlled
variance. The key idea is to balance the variance of the
sample covariance with the bias introduced by the target
matrix, thereby improving the overall estimation quality.

A particularly effective shrinkage estimator is the Oracle
Approximating Shrinkage Estimator (OAS) [42]. OAS im-
proves the estimation of covariance matrices by adaptively
selecting the shrinkage intensity based on the characteristics
of the sample data. Rather than using a fixed shrinkage pa-
rameter, OAS computes the optimal intensity that minimizes
the expected error (typically measured by the mean squared
error) between the true covariance matrix and the shrinkage
estimator. In practice, the OAS estimator constructs the
covariance estimate as follows:

Yoas = (1 — a)Xmig + oF, (D

where Yy g is the sample covariance matrix estimated via
MLE, F'is () , p is the dimensionality of the data, I is the
identity matrix, and « is the shrinkage intensity determined
from the data.

3. Membership Inference on Sequence Models

In the following, we focus on language models for sim-
plicity and hence use the terms token and sequence elements
interchangeably. However, all points apply for more general
sequence models, such as autoregressive image generators
(see Appendix C for an example). Moreover, we use LiRA
as a baseline MIA, but our observations also apply to other
shadow model-based attacks such as [32, 43].

3.1. Mismatched Assumptions in Naive LiRA

We hypothesize that the standard LiRA attack has im-
plicit assumptions that can be invalid for sequence models.
Concretely, those assumptions are

1) Independence: The membership signal is suffi-
ciently captured by a sample’s loss. Multiple statis-
tics for a single sample are independent.

2) Heteroscedasticity: the variance of a sample’s loss
(or a derived statistic) depends on whether the
sample is in the training data or not.

In the following, we discuss how those assumptions might
be invalid for sequence models and propose adaptations.
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Figure 2: Assuming independence between per-token
losses can yield a large approximation error. We use
the full covariance MLE (with 484 shadow models) as
the gold standard, and measure the distance in Frobenius
norm (“Covariance Approximation Error”) to other models’
estimates. As the number of shadow models increases, we
analyze this error using 1,000 average-case canaries from
the IN case of Pythia 1b with a sequence length of 128. See
Figure 6a in Appendix B for the corresponding figure for
the OUT case, and for more details, see Appendix A.

Independence. For traditional classification models,
such as image classifiers, a sample’s cross-entropy loss
depends on the entire sample. In contrast, autoregressive
models typically calculate a loss per token, such that a
sample’s loss is the sum (or mean) of per-token losses.
Hence, a naive application of LiRA—which only uses the
loss of the entire sequence—corresponds to modeling the
token losses as independent Gaussians.

However, the per-token losses of autoregressive models
are highly dependent by definition! We hence model the en-
tire per-token loss vector as a multivariate Gaussian, thereby
explicitly accounting for inter-token correlations. This re-
sults in the following modified hypothesis test, where the
IN and OUT distributions are now multivariate Gaussians:

L N(S(f,x) | Hz ,in, Ex,in)
A(f’ x) o N(S(f7 l’) ‘ Hz out, Emput) ’

where the score function S(-, -) applies element-wise for ev-
ery per-token loss, Ly in, fz,0ut ar€ Mean vectors with dimen-
sionality equal to the sequence length 7', and X, in, Xy ou
are T' x T covariance matrices.

We illustrate this model mismatch in Figure 2 for se-
quences of 128 tokens. First, we estimate the full covariance
matrix using many shadow models (484) for an LLM (Pythia
1b). We then compute the covariance matrices according to
the original LiRA model (X = ¢2I; “Naive LiRA (Univari-
ate)”’) and a model that estimates per-token loss variances
but no correlations (X = diag(c?,...,0%); “Independent
(Multivariate)”).> Finally, we compute the distance of the

2. We drop the in/out suffix for brevity.
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Figure 3: Assuming shared covariances (homoscedascity)
is empirically beneficial. The Relative Covariance Error is
measured as the relative difference between the Covariance
Approximation Error of the Class-Wise and Shared covari-
ance estimates. As the number of shadow models increases,
we analyze this error using 1,000 average-case canaries from
the IN case of Pythia 1b with a sequence length of 128. See
Figure 6b in Appendix B for the corresponding figure for the
OUT case, and for the experimental details, see Appendix A.

full covariance matrix to the two approximations in terms
of Frobenius norm. Both approximations do not converge to
the full covariance, and have a large approximation error—
especially for few shadow models.

Unfortunately, the full covariance matrix has a parameter
count that is quadratic in the number of tokens. This signifi-
cantly increases the sample complexity required for accurate
covariance estimation. Because the number of samples cor-
responds to the number of shadow models, the larger sample
complexity also increases computational cost.

To obtain the richer model with a manageable computa-
tional cost, we explore efficient covariance estimation tech-
niques. The OAS estimator [42] is particularly well-suited
for high-dimensional settings with limited samples. As seen
in Figure 2 (“OAS (Multivariate)”’), OAS approximates the
full covariance more accurately with few shadow models,
and eventually matches the full covariance.

Heteroscedasticity. Standard LiRA assumes that the
covariance of losses differs for in vs. out distributions (het-
eroscedasticity). However, for sequence models, we find that
using the same covariance matrix for both distributions (ho-
moscedascity) is empirically more accurate. This effectively
doubles the number of available samples for covariance
estimation, as we use the shadow models from both the in
and out distributions to estimate the covariance matrix.

Concretely, we use 484 shadow models to obtain an
accurate estimate of the full covariance matrices to serve
as a gold standard. We then estimate covariances with
different structures for a varying number of shadow models,
once class-wise (homoscedastic), and once shared between
classes (heteroscedastic). We then calculate the approxima-



tion error in terms of Frobenius norm between the estimates
and the gold standard, and plot the relative difference (class-
wise error minus shared error, normalized by the shared
error). A large relative difference indicates that the class-
wise covariance estimate has a much larger approximation
error than the shared covariances.

Figure 3 illustrates the benefits of using the same in and
out distributions. We find that using the same covariance for
in and out distributions is typically beneficial, as indicated
by the mostly positive relative difference. Those benefits are
particularly pronounced when the number of shadow models
is small; we conjecture that this is again due to the reduction
in sample complexity.

3.2. Attack Variants

Based on the previous observations, we consider the fol-
lowing concrete adaptations for LiRA on sequence models:

o Univariate: A baseline approach where per-token
scores are averaged into a single scalar, and a uni-
variate Gaussian distribution is estimated for each
class (member and nonmember). This corresponds
to a naive application of LiRA to sequence models.

+ Independent: Uses per-token scores directly but re-
tains the independence assumption, estimating only
the diagonal tokens of the covariance matrix.

o OAS: Drops the independence assumption by esti-
mating the covariance matrix using OAS.

Additionally, based on the Heteroscedasticity assump-
tion, each of these methods can be further divided:

o Class-Wise: Estimates separate covariance matrices
for members and nonmembers.

e Shared: Uses a single covariance matrix for both
classes, leveraging all available samples for esti-
mation. In this case, we first center the members
and nonmembers using per-class means, but then
estimate a shared covariance matrix.

In some cases, tokens in the sequence may be redundant
or introduce unnecessary noise. To address this, we explore
methods to reduce the sequence length while preserving
essential information:

e Group. The sequence is divided into fixed-size
chunks, and the average score is computed for each
chunk. This approach smooths local variations while
retaining overall trends.

e Min. The token with the smallest score is selected.
This follows a similar intuition as Min-K%, empha-
sizing the most confident (least anomalous) tokens
in the sequence.

e« Max. Analogous to Min, but instead selects the
token with the largest score, capturing the most
uncertain or anomalous regions in the sequence.

4. Experiments

4.1. Setup

We study attack variants across two language modeling
tasks: training an LSTM from scratch and fine-tuning a
transformer-based LLM. This comparison provides insights
into how different generative models memorize and expose
sensitive information under various conditions. Furthermore,
in Appendix C, we describe a case study using Pixel-
CNN++ [36], an autoregressive image generator. Our ob-
jective is to assess the performance of membership infer-
ence attacks (MIA) under different model architectures and
training paradigms.

We use two types of canaries: average-case and worst-
case. We sample average-case canaries uniformly from the
test set. They hence represent naturally occurring sequences
within the dataset and help measure memorization under
typical conditions. For worst-case canaries, we aim to pick
samples that are particularly prone to memorization. Fol-
lowing common wisdom [6, 44], we use random token
sequences as worst-case canaries. These synthetic sequences
serve as adversarial inputs designed to maximize memo-
rization effects, thereby approximating an upper bound of
privacy leakage. In both cases, we consider 10,000 canaries.

We train all the language models on the PersonaChat
dataset [45], which consists of conversations of people
describing themselves. This dataset mimics a realistic set-
ting where privacy leakage could be a concern. For each
architecture and canary type, we train a total of 64 models,
ensuring that each canary appears in exactly half of the
model’s training data. We then adopt a common leave-one-
out strategy for evaluation. That is, we treat each of the
64 models as a target and use the remaining 63 models as
shadow models.

LSTM-Based Models. We train the LSTM models [39]
from scratch using a standard architecture. The architecture
consists of an initial embedding layer to encode tokens,
followed by two LSTM layers with a hidden dimension
of 192 and a fully connected prediction head for token
classification. We use the Pythia 1b tokenizer and train the
model on the standard next-token prediction task with cross-
entropy loss. See Table 1 from Appendix D for the specific
choice of hyperparameters.

Transformer-Based Models (Pythia 1b). For both
average- and worst-case canaries, we fine-tune the dedu-
plicated Pythia 1b model [41], a 1-billion-parameter
transformer-based language model pre-trained on a large
corpus of data from the internet. The training follows the
standard next-token prediction objective using cross-entropy
loss. To further explore the importance of the number
of shadow models, we fine-tune a large number (484) of
shadow models using average-case canaries. As in the other
settings, we run leave-one-out on all the 484 shadow models.
See Table 1 from Appendix D for specific hyperparameters.

Evaluation. We focus the evaluation on the true positive
rate (TPR) in the low false positive rate (FPR) regime,
specifically on TPR@0.01% FPR. This metric identifies
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Figure 4: The Univariate Class-Wise approach (Naive
LiRA) results in a weaker attack. TPR@0.01% FPR for
various attacks using 10,000 average-case canaries with 64
shadow models. The Shared version consistently achieves
better performance. Refer to Table 2, in Appendix F, for
MIA performance with worst-case canaries.

instances of memorization with high confidence, aligning
with standard practices in privacy auditing (see [5, 18] for
a detailed discussion).

4.2. Comparison of Different Attacks

We first present an overview of LiRA adaptations using
the different covariance estimators and a class-wise vs.
shared covariance. Concretely, we compare all six attack
variants using 64 shadow models with average-case canaries
in Figure 4. Additionally, in Appendix F, Table 2 shows
the results for the worst-case canaries and the image do-
main. Moreover, Appendix E highlights the Receiver Oper-
ating Characteristic (ROC) curve for the LSTM and Pythia
average-case canaries, and shows that in these settings, the
OAS systematically matches or beats the Univariate and
Independent approaches across the whole curve.

First, compared to a naive baseline (“Univariate Class-
Wise”), adaptations for sequence models seem to consis-
tently uncover an order of magnitude more memorization
in most cases. In particular, assuming homoscedasticity
(“Shared”) alone can significantly increase the TPR at a
low FPR and never hurts. When considering worst-case
canary, the models memorize significantly more, and in
particular, the Independent Shared approach has a TPR @
0.01% greater than 95% for both LSTM and Pythia 1b. In
Appendix G, we examine various length reduction strategies
and show that discarding certain tokens can enhance perfor-
mance. For example, Figure 13 illustrates that the ‘“Min”
strategy—retaining only the two tokens with the smallest
loss—yields a higher true positive rate (TPR).

The optimal attack method and length reduction strategy
vary depending on the specific setting. In particular, it is
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Figure 5: The Univariate Shared attack is slightly better
for small numbers of shadow models (< 16), but it is
significantly worse for large numbers of shadow models.
The reported TPR@0.01% FPR results illustrate the perfor-
mance of various attacks as the number of shadow models
increases, based on experiments conducted with Pythia 1b
and 10,000 average-case canaries.

important to analyze the covariance matrix to understand
which prior information is useful in that specific setting.
For instance, if the real covariance matrix is close to a
diagonal matrix, and there is limited interaction between the
tokens, then using the Independent approach leads closer to
the real covariance matrix with a smaller number of shadow
models than using the OAS method. Vice versa, if the real
covariance matrix has many interactions the OAS approach
becomes a more suitable choice.

4.3. Impact of the Number of Shadow Models

The number of shadow models plays a crucial role in
calibrating the attack, as it directly influences membership
inference performance. To better understand this relation-
ship, we analyze how attack effectiveness changes as a func-
tion of the number of shadow models, using a setting where
we have access to a larger pool of 484 shadow models. As
illustrated in Figure 5, increasing the number of shadow
models improves attack performance by uncovering more
memorization, leading to higher TPR at low FPR. However,
we observe key differences across methods. The univariate
attacks plateau early, peaking at 32 shadow models, while
more expressive estimators continue improving with addi-
tional models. Notably, for small numbers of shadow models
(£ 16), the Univariate Shared attack slightly outperforms
others, suggesting that a simpler approach yields higher
TPR in this setting. Additionally, shared covariance estima-
tors consistently achieve comparable or superior TPRs with
fewer shadow models than the class-wise approach, making
them a more efficient choice when computational resources
are limited.



5. Conclusion

In this work, we question the assumptions of standard
membership inference attacks in the context of large se-
quence models. Based on the resulting insights, we introduce
adaptations for existing membership inference attacks. Our
results demonstrate that leveraging correlations between per-
token losses, rather than relying solely on the average loss,
significantly boosts attack performance. Most importantly,
our adaptations enable strong audits with only few shadow
models—a crucial requirement given the computational cost
of training large sequence models. We hence provide an im-
portant stepping stone towards reliable memorization audits
for large sequence models.
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Appendix
A Figure Setup

Here, we describe the setup for the most relevant figures.

Figure 1. The two groups of bars refer to the LSTM,
and the Pythia 1b, which are the two language settings
analyzed, using average-case canaries. As described in Sec-
tion 4.1, we used 10,000 samples and 64 shadow models.
The “Naive Approach”, which corresponds to LiRA as-is,
where membership guesses only depend on a sample’s loss,
corresponds to the Univariate Class-Wise approach, while
”Our Approach” corresponds to OAS Shared.

Figure 2 and Figure 3. The figures focus on the case
with Pythia 1b and average-case canaries because we have
access to a larger number of shadow models. To obtain the
most reliable estimation of the full covariance matrix, we use
all 484 shadow models and apply the MLE, which serves
as gold standard. Our analysis is based on 1,000 samples
from the average-case canaries. In Figure 2, the y-axis
represents the covariance approximation error, measured as
the Frobenius norm between the gold standard estimate
and the covariance matrix obtained using different methods
with varying numbers of shadow models. We choose the
Frobenius norm as it is one of the most commonly used
norms for matrices. For Figure 3, the y-axis represents
the relative covariance error, which quantifies the relative
difference between the covariance approximation error of
the shared estimated covariance matrix and that of the class-
wise estimated covariance matrix (class-wise error minus
shared error, normalized by the shared error). A higher
relative covariance error indicates that the shared estimation
is better (a smaller covariance approximation error) than the
class-wise one.

B Additional Covariance Estimations

Figure 6a and Figure 6b present the corresponding re-
sults using the OUT case samples, analogous to Figure 2

and Figure 3, respectively. The OUT case (distribution of
the nonmembers’ losses) shows the same trends as the IN
case (distribution of the members’ losses).

C Case Study: Autoregressive Image Generator

We also consider a case study using Pixel-CNN++ [36],
an autoregressive image generator.

Experimental Settings. We train 64 instances of Pixel-
CNN++ [36] on CIFAR-10. Due to the computational cost,
the models are trained on a smaller number of epochs,
compared to the original implementation which trained the
model for 5000 epochs, the model is slightly under-trained
leading to poor membership inference performance. There-
fore, this shows an extremely challenging setting. We use
samples from the test set as canaries. Compared to the
language setting, where the sequence length is 128, in the
image case the sequence length depends on the size of the
image which is 32 x 32, and therefore the sequence length
is 1024. This further increases the computational cost and
the complexity of the task.

Attack Evaluation. Figure 7 shows the performance of
the MIAs with an Autoregressive Image Generator. Overall,
the performance is quite poor. For this reason, we highlight
the MIA performance using TPR @ 1% FPR instead of
TPR @ 0.01 FPR. In Appendix F, Table 2 confirms that
the performance for 0.1% and 0.01% is close to random
guessing. OAS is the only attack that performs better than
random guessing for TPR @ 1% FPR. The reason is that
there is a stronger interaction between tokens than in the
language domain. To illustrate this, Figure 8 shows the
covariance matrix of the per-token loss distribution of the
members. We observe that the structure is more complex
and is different from the Independent one, as the covariance
matrix has nonzero values outside the diagonal.

D Choice of the hyperparameters

Table 1 shows the selected hyperparameters for each
setting. In all the settings, we trained the models using
AdamW [46].

E ROC Curve

Figure 9 and Figure 10 show the log-scale Receiver Op-
erating Characteristic (ROC) curve of the success rates of the
different types of attacks for the LSTM and Pythia Average.
In particular, Figure 9 shows the ROC curve using the two
covariances (Class-Wise), while the Figure 10 shows the
results with a single shared covariance matrix (Shared). In
both cases, the results are for the average-case canaries. We
see that the OAS approach has a higher TPR compared to
the other in particular, for low FPR, where privacy auditing
is more important.

F Detailed Results

Table 2 shows the results for each setting. First, we
observe that the sequence-aware attacks (Independent and
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(a) The Covariance Approximation Error, measured as the Frobenius (b) The Relative Covariance Error is measured as the relative dif-
norm between the covariance matrix estimated using 484 shadow ference between the Covariance Approximation Error of the Shared
models and the full covariance MLE, is compared to the covariance estimated covariance matrix and the Class-Wise one. As the number
matrix estimated with a given method and varying numbers of of shadow models increases, we analyze this error using 1,000
shadow models. As the number of shadow models increases, we average-case canaries from the IN case of Pythia 1b with a sequence
analyze this error using 1,000 average-case canaries from the OUT length of 128.

case of Pythia 1b with a sequence length of 128.

Figure 6: The OUT case follows the same trends as the IN case.

Setting Epochs  Learning Rate ~ Weight decay = Batch Size  Hidden Dimension  Sequence Length
LSTM 10 1073 0.0 64 192 128
Pythia 1b 7 10~4 10~4 16 / 128
Pixel-CNN++ 50 103 0.0 192 192 1024

TABLE 1: The selected hyperparameters for each setting
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Figure 7: OAS is the only approach that performs better Figure 8: The covariance structure is not diagonal. The
than random guessing. The TPR @ 1% FPR using Pixel- covariance matrix of the OUT case is estimated using the
CNN++ for average-case canaries. full covariance MLE on the distribution of the first 64 tokens

with PixelCNN++ using 64 shadow models.

OAS) obtain higher TPRs across all the settings. For the
image case, all the attacks have a close to random guessing

performance due to the complexity of the task. ference. Grouping corresponds to chunking the tokens in
groups and computing the average of each group, therefore,
G Comparison of Length Reduction Strategies when the sequence length is 1, this corresponds to Naive

LiRA (Univariate Approach), and using all the 128 tokens
We further evaluate length reduction strategies that aim  corresponds to the standard baseline (either Independent or
to select a representative subsequence for membership in- OAS). Figures 11 to 14 show the TPR @ 0.01% FPR for
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Figure 9: Using the Naive Approach (Univariate) gives suboptimal results. Comparing the true positive rate vs. false
positive rate for different ways to model the LiRA IN and OUT distributions in the class-wise case. On the left, we use an
LSTM, and on the right Pythia 1b using average-case canaries.
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Figure 10: Using Naive Approach (Univariate) gives suboptimal results, also when considering a shared covariance
matrix. Comparing the true positive rate vs. false positive rate for different ways to model the LiRA IN and OUT distributions
in the shared case. On the left, we use an LSTM, and on the right Pythia 1b using average-case canaries.

different length reduction strategies. For instance, Figure 11,
which represents Pythia 1b with the average-case canaries,
shows that using all the tokens is beneficial, however, it
is not always the case. For instance, when evaluating the
LSTM with average-case setting, Figure 13 shows that Min
with a reduced sequence length of 2 gives the best MIA.



Pythia Average Pythia Worst LSTM Average LSTM Worst Image
MIA 01% 001% 0.1% 001% 01% 001% 0.1% 001% 0.1% 0.01%
Univariate Class-Wise 8.69 2.72 95.04  89.66  0.10 0.01 92.51 433 0.10 0.01
Univariate Shared 10.01 4.09 9491 9126  0.18 0.01 95.82  88.25 0.10 0.01
Independent Class-Wise | 21.78 2.37 99.58  99.18 0.11 0.01 91.52 0.02 0.10 0.02
Independent Shared 3698 20.72  99.67 99.30  0.39 0.04 98.75 95.00 0.10 0.01
OAS Class-Wise 2626  13.81  99.78 9957 045 0.15 23.19 0.03 0.11 0.01
OAS Shared 3095 1881  99.67  99.37 1.03 0.87 70.74  30.72  0.10 0.01

TABLE 2: The univariate attacks always under-perform the sequence-aware attacks. The TPR@{0.1,0.01}% FPR for
different types of attacks and settings. All the scores are computed using 10,000 canaries and 64 shadow models using

leave-one-out.
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Figure 11: Pythia - Average-case canaries. TPR @ 0.01% FPR for different length reduction strategies on Pythia 1b with
the average-case canaries. The black lines represent the baselines, where no grouping strategy is applied, and all the tokens
in the sequence are used. The dashed lines represent the OAS case, while the solid lines represent the Independent case.
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Figure 12: Pythia - Worst-case canaries. TPR @ 0.01% FPR for different length reduction strategies on Pythia 1b with
the worst-case canaries. The black lines represent the baselines, where no grouping strategy is applied, and all the tokens
in the sequence are used. The dashed lines represent the OAS case, while the solid lines represent the Independent case.
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Figure 13: LSTM - Average-case canaries. TPR @ 0.01% FPR for different length reduction strategies on LSTM with

the average-case canaries. The black lines represent the baselines, where no grouping strategy is applied, and all the tokens

in the sequence are used. The dashed lines represent the OAS case, while the solid lines represent the Independent case.
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Figure 14: LSTM - Worst-case canaries. TPR @ 0.01% FPR for different length reduction strategies on LSTM with the

worst-case canaries. The black lines represent the baselines, where no grouping strategy is applied, and all the tokens in
the sequence are used. The dashed lines represent the OAS case, while the solid lines represent the Independent case.
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